Messages In A Bottle

by Brian Long, presented in Hammersmith for BUG on 25 May 1999

The projects in this directory tree are designed to show numerous ways of liasing with Windows messages. The projects are as follows:

SENDING\SENDING MESSAGES\SENDMSGS.DPR

Four ways to send a minimise message to a window (that happens to be a Delphi form). These include two API routines (PostMessage and SendMessage), one VCL version of one of the APIs and using a property that has the same effect.

SendMessage causes the target window’s window procedure to be executed to process the message and the calling code does not return until the window procedure finishes. PostMessage places the message in the message queue of the application that owns the window. When the application later polls the queue for messages, the message will be picked out, sent to the target window procedure, and processed. Perform is a method of a TControl and acts like SendMessage, but without going directly to the Windows API first. Additionally, since TControls have no window handle, this means non-windowed controls can also be made to process messages.

SENDING\DRAGGING CONTROLS\DRAGGING.DPR

Program that shows how to drag controls by doing exactly what Windows does when you drag a form (via its caption bar). Note that WinSight can be used to identify that this message is sent when performing the drag. The program shares one OnMouseDown event handler between all controls on the form, including the form itself. This means you can drag anything on the form around, and also drag the form using its client area.

SENDING\DRAGGING CONTROLS\DRAGGING2.DPR

The previous project sends a wm_SysCommand message to the control in question to get the desired effect. Windows does this when you click on the caption area. It does it because the mouse was pressed when not in the client area, but on the caption bar. It identifies this through sending wm_NCHitTest messages as the mouse moves. This project achieves the same effect for the form, by handling this message. If the default handling identifies that it is on the client area, this is changed and we pretend that it is on the caption bar. Windows will then send the relevant wm_SysCommand message for us.

RECEIVING\NORMAL MESSAGES\RECEIVE.DPR

This shows three mechanisms for picking up a message in a Delphi application. A Windows message handling method (which relies on a message constant), overriding WndProc, and using an event that already intercepts the message. Of course in practice, if there is an event that does the job, you should ignore Windows messages.

RECEIVING\CUSTOM MESSAGES\PARENTANDCHILD.BPG

Two projects that both register a unique custom Windows message using RegisterWindowMessage (in a shared unit). If one application wishes to broadcast a message to all top-level windows, where only some will be interested, there is benefit in using RegisterWindowMessage as it gives a unique message number, when provided with a unique string. However since you will not know the message value at compile-time you cannot use a message handler, which requires a constant value. To trap one of these, you instead have to override the form's WndProc method. This custom message is broadcast by one project around all top-level windows. Applications must use SendMessage to broadcast a message. The other project picks the message up and indicates the fact with a message box.

RECEIVING\INTERNAL MESSAGES\TESTCHK1.DPR through to TESTCHK4.DPR

These projects demonstrate how to overcome one of the side-effects of the VCL internal architecture. The problem is that sometimes you may expect a message to arrive, but it doesn't, being swallowed up inside the VCL. There are usually ways around the problem, and these show the way around one problem. The problem highlighted in these examples is trapping up and down cursor keys for a checkbox. The relevant message is not filtered through to the checkbox as it is swallowed by the form first. The file RECEIVING\INTERNAL MESSAGES\LOSTMESSAGES.DOC is an extract from The Delphi Clinic, from Issue 20 of The Delphi Magazine that discusses the problem and these solution projects in detail. Note that they rely on several components being installed (you can install NEWCHKS.PAS to accomplish this).

RECEIVING\DATA MESSAGES\DATACOPYING.BPG

Messages allow you to send two four-byte values from one window to another, potentially in another application. If the window is in the same process, these four byte values can be pointers to larger data structures. If the target window is in another application, then this is forbidden as each application is in a separate address space. For this situation, we have wm_CopyData, designed to allow copying of data from one process address space to another (this must be raw data - no pointers at all, which means no Delphi objects or strings). One project launches another. To enable the child process to talk to the parent, the parent's main form handle is passed on the command-line. The child picks up this handle, and sends its own main form handle back to the parent as a parameter to a custom message (since this message is only being sent to one specific window, a simple message constant is used; a value higher than the constant wm_App). The parent can then send a wm_CopyData message to the child main form window whenever it wishes to. 

RECEIVING\APPLICATION MESSAGES\PARENTANDCHILD.BPG

Two projects that show how one application can post a message to another without knowing any of its window handles (compare the DATACOPYING.DPR project above, which jumps through hoops to identify another application’s main window handle). The second project picks up the message in its Application object's OnMessage event handler, spots the lack of a target window and decides what to do with it. In this example, the message was to minimise the second app, and the message has the correct values except for the window handle. So the child process simply posts the same message to its Application object window, thereby minimising the whole application. Application.OnMessage picks up posted messages only.

RECEIVING\APPLICATION MESSAGES\APPMSG.DPR

An application showing how to hook into the Application object's window procedure using HookMainWindow and UnhookMainWindow. Unlike event handlers, you can add as many hooks as you like. This example traps wm_EndSession, as Windows is closing and makes a beep. Actually that statement is commented out and the program plays a WAV file which will be unlikely to exist on your machine. An Application main window hook will pick up all messages either sent or posted to the Application object's window (in other words all messages that make their way to the Application object’s window).

RECEIVING\APPLICATION MESSAGES\SCROLLBAR.PAS

A component based upon a TScrollBar that also hooks the Application object's window procedure to identify when certain system parameters have been changed. It picks up wm_WinIniChange and will alter the proportions of the scrollbar if the user has changed system scrollbar dimensions in Control Panel. The normal TScrollBar does not do this.

